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STUDY CF A CILASS OF NON-GAUSSIAN SIGNAL PROCESSING PROBLEMS

C. H. CHEN

INTRODUCTION

~Gaussian assumption has been a fundamental ane in most statistical signal
processing wark. The assumption not only simplifies the analytical problems
involved but also matches the data characteristics in many cases because of
the law of large numbers. In a number of Navy sanar, radar and conmmications

systems, signal processing algorithms must be developed without the Gaussian

assumption, A\ The need for non-Gaussian signal processing

study was well described in a recent ONR SRO booklet. In our view the follow-

ing is a partial list of a broad spectrum of correlated problem areas in non-

Gaussian signal processing.

1. To investigate non-linear adaptive procedures to assess their
detection performance against transient signals.
To investigate non-linear spectral analysis tedhniques such as
the Maximm Entropy Spectral Analysis (MESA) and the Maximum
Likelihood Method (MIM) to assess their detection performance
against transient signals.
To investigate techniques for weak signal extraction in the pre-
sence of strong interferring signals. As a special case, potential
techniques for detecting broad-band (such as spread-spectrum) signals
can be explored including the analysis of changes in noise statistics
caused by pseudo-noise signals,
To explore the use of nonparametric and robust statistical approaches

to devise algorithms which perform well under different noise charac-

teristics.
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5. To study non-Gaussian models appropriate for reverberation or
reverberation-like noise found in shallow water environment.

6. To examine the effects of non-Gaussian sources of impulsive noise
interference in time-delay estimation, passive range estimation and
related underwater acoustic signal proogssing prablems.

7. To enlarge the basic mathematical and statistical theory of non-
Gaussian stochastic processes applicable to both electramagnetic
and underwater sound enviramments .

8. To characterise the non~Gaussian channels and interferences including
the multipath, dispersion, doppler effects and the optimal reception
under these circumstances.

9. To examine the modifications required in the existing signal processing

system hardware for non-Gaussian signal processing.

Obviously good solutions to the above problems require expertise in several
areas such as commumnications and information theory, pattem recognition, wave
propagation, digital signal processing, image processing, and mathematical sta-
tistics, etc. As the prdblems are interrelated, they should be treated jointly
as much as possible. Problems 1 and 2 are examined in detail in this report.

For Problem 3, detection performance of spread-spectrum signals and the extraction
of weak signals in Gaussian noise have been cansidered even though further work is
much needed. For a general discussion of spread-spectrum systems, see [1].
Adaptive digital filtering and Kalman filtering are suitable techniques for
extraction of broad-band non-Gaussian signals in noises. However analytical

work an the detection performance is not available. For Problem 4, some exist~

ing analytical work on robust and nonparametric detection of signals in impulsive
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noise and random interference (See {2] and the references listed in the paper)
are useful. Wwhile general theoretical work based on general assumptions is
very important, special cases should be considered so that the detection pro-
cedures and performances developed will match more closely to specific impul-
sive noise and random interference conditions considered. Proper mathematical %
modelling of impulsive noise, randam interference and channels is thus required, '
which is the Problem 5 stated above.

Time-delay estimation and passive ranging estimation fram an array of
sensors are typical sonar signal processing problems (see e.g. [3] [4]). Pro-
blem 6 suggests that the non-Gaussian sources be taken into consideration as
the existing work based on Gaussian assumption is quite restrictive. Prablem 7
presents a nunber of mathematical and statistical topics to be explored. In
fact same theoretical work for Gaussian signals and Gaussian noises can be ex-
tended to non-Gaussian cases [5]. For exawple, consider the detection and esti-
mation of Gaussian signal in Gaussian ﬁoise. The conditional mean of the signal
is the best estimate for a variety of criteria. In the non-Gaussian case it is
the best linear estimate in the sense that mean-squared error is minimized. Wwhen
the signal is unknown but non-randam, the maximmm likelihood estimate of the
signal is the same whether the noise is Gaussian or non-Gaussian. The test sta-
tistics for detecting non~Gaussian signal in Gaussian noise is the same as that
for detecting Gaussian signal in Gaussian noise at small signal condition. Many
other mathematical properties remain to be examined.

Problem 8 has been well explored and reported in publications in cammmica-
tions, wave propagation and other areas. However, much less amount of work has

been done for underwater transmission media. Although most signal processing
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hardware designed for Gaussian signal processing can also be used for non-
Gaussian signal processing with non-optimal performance, a modification of
the hardware is a worthwhile effort to provide significant performance im-

provement in many cases.

NON-LINEAR ADAPTIVE DETECTION PROCEDURES

One fundamental prablem with the non-Gaussian signal processing is that
the data is often nonstationary. Adaptive procedures are needed for estima-
tion and detection of transient signals. Starting with the linear adaptive
detection procedures, we have extensively explored the feasibility of Adaptive
Digital Filtering and Kalman Adaptive Filtering [6] [7]. As the statistical
characteristics of the data change with time,filter parameters must be re-
adjusted at periodic intervals. This is considered as a piecewise linear
adaptive procedure. If the data statistics are

maonitored continuously and the parameters are adjusted with each significant
change in data statistics, we will have a nonlinear adaptive procedure. Detec-
tion of the desired signal from the filtered output can be performed by the
thresholding or correlation operation.

The Adaptive Digital Filter as shown in Figure 1 is a non—recursive digital
noise by itself without making Gaussian assumption of the data. ILet N be the
order of the filter. The input-output relation of the filter is given by

N
gI’I'IB 20 bn,m fm-n Q)
e

where In ig the filter astput, bn,m is the filter coefficient, and f‘n is the

filter autput. Define the vectors
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Fig. la The Adaptive Digital Filtering System.

Fig. 1b The nonrecursive Adaptive Filter.
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BEquation (1) can be written as
In = Bm. Fn = Fm'Bm )

By using the Noisy least-Mean-Square Algorithm [8], the filter coefficients
can be determined fram the equations

( =
Bm+-l Bm+vemFm
0 “¥n "% )
= ]
| 9 “Bum

where v is a oonstant. After adjusting the parameters that include v, N, m,
and delay time, we can cbtain the desired result with a greatly improved signal-
to-noise ratio. Obviously the Adaptive Digital Filter works well with stationary
data. Parameter choice may require a lot of trial-and-error even though the
filtering procedure is fairly simple.

The signal model of the Kalman Adaptive Filter is given bys

Xetl = T X % Q)
where X is the state variable, w is the system noise, N is tha-n'eamtent
noise. Note that Gaussian assurption is not required of Xer Vi and Ws Given

a set of measurements zk,k=1, 2, —-,N,wewmldliketoestim\teﬁdk=l,
2, = N, based on the state-space signal model given by By. (4]. Since
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Z =X + Vi o we have
Bl = Tl * Vi = Oy Xt W)+ Vi (5)
Define an error criterion function,

_ ) Cw 212
Tl = e = B Ko+ W = V) = L ©

If 241 and X are known, we determine the values of w , Vil and ﬁk iteratively
such that the state space model is optimum in the miniumum mean square error sense.
The method of Steepest Descent can be used in the optimization process [9]. Once
the optimm values of Wer Vi and Fk are obtained, we can perform a ane-step

prediction of Xyl by using the egquation

X1~ T B W )
with L being the prediction error. The iterative procedure for the optimiza-
tion at the ith iteration is given by

Ye,iel = W,i * M)

Vieel,i41 = Virl,i * A& (8)

Fi,is1 = Fx,i 2 (2Ix)

Here the increment ) and ¥ie,0" Vke1,0' and Fk,o were given initially. In seismic

data processing, it is reasonable to assume that

F

k,0 = “%,0 = Yk+1,0= 0 ]

Furt:hemnre,theinitialstatecanbedlosenasxo=0. These assunptions should

be appropriate for many non-Gaussian signal processing problems.

It will be of interest to examine some camputer results with the seismic
data which is non-Gaussian [7]. Both Adaptive Digital Filtering and Kalman Adap~
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tive Filtering can perform well to extract impulse-like signals fram a corre-
lated non-Gaussian background noise. With properly selected parameters the
Adaptive Digital Filtering performs nearly the same as the Kalman Adaptive
Filtering. Figqure 2 shows the results of Kalman Adaptive Filtering for three
channels of data with 960 data points each. This data segment represents a
section of camplete file. The upper part of each photo is the original data
while the lower part is the filtered result. The extracted impulses occur at
nearly the same time instants. The only parameters to be selected are AL

(the increment) and ITR (the nuwber of iteration). An empirical relationship
between AL and ITR is established for each chamnel as shown in Figure 3. Each
point on the curves represents an optimal combination of AL and ITR. Although,
the curves are samewhat depending on the data especially on the background noise
level, they serve as a useful guideline for the Kalman Adaptive Filtering which
is almost nonpararetric and is more robust than the Adaptive Digital Filtering.
If automatic detection is desired, a correlation or a thresholding operation
can be used. Theoretical detection performance, however, is not available.

As the data statistics are generallly nonstationary, the parameters of the
Adaptive Digital Filtering must be adjusted periodically. No such requirement
is needed in Kalman Adaptive Filtering as the final estimate for the previous
data point can be used as initial value for the current estimate. Anocther
method to incorporate the time-varying statistics in the Kalman filtering is to
use an "on-line" monitoring process to detect the significant change or "jump"
in the state and update the state vector accordingly [10]. This nonlinear method
however is limited to Gaussian statistics. Based an the above discussion the
Kalman Adaptive Filtering method appears to be most suitable for non-Gaussian
signal processing. Experimental study has demonstrated good detection perform-

ance with the method.
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Fig. 2a
Channel 1 and adaptive
Kalman filtered data.
AI=0.0038
ITR=10

FELORDS 1 TO 4G

Fig. 2b
Channel 2 and adaptive
Kalman filtered data.
AL=0.0028
ITR=10

Fig. 2c
Channel 3 and adaptive
Kalman filtered data.
AL=0.007

ITR=10
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III. Nonlinear Spectral Analysis Techniques

;
3
i
i
]
{

Both the maximum entropy method (MEM) due to Burg and the maximum
likelihood method (MIM) for power spectral analysis are considered as non-

linear high-resolution spectral analysis techniques suitable for processing

transient signals. They both bear a very close relationship to non-linear

; adaptive array processing techniques [11]. Furthemore the two methods are

; very closely related [12]. Experimental results have demonstrated that MEM
is superior to MIM in spectral resoluticn (see e.qg. [13]]. Improvement over
the existing Burg's MEM is possible by further reducing the final prediction
error with the Fletcher and Powell optimization method as proposed by Fougere
[14]. Other algorithms that provide more accurate spectral analysis than the
Burg's method have also been proposed (e.g. [15]). The maximum entropy method 4
based on the Fougere's technique has been successfully implemented at the PDP

11/45 minicamputer here at the Southeastem Massachusetts University.

Given n data points Xpr Xyr Ty X, We define an (m + 1) - point pre-

diction error filter (1, In1’ G2’ gmn) such that the kth prediction

€rrors are

m
1k T z Xy im-i i

L K A AT A 1 BRI T 4

(9)

m
€orc = Z . Xer1 Imi , k =1,2,3, =, i-m
l=

where 90 = 1 and €1k and e are the forward and backward prediction errors,
respectively. The mean square prediction error, or mean error power, in both

time directions is

1T
P_=0.5(n - m) € (10)
m =1 k=1 SK

—— o ST T SR T e i e T e R R




et it o M b S et o S A b S okl Y SN 5% it A M 2 A R0 3l L e AL L

¢9—

If the prediction error filter of all orders 1, 2, —, m are gathered
in one matrix G, (with the leading "1" suppressed), we may write

¢
M
v
q
¥
1
4
N
1
3
1

9y,
91 922
: G = ! (11)
N !
(%1 2 "7 77 %m |

The off-diagonal elements of Gm can be determined fram the diagonal

elements by using the Levinson recursion,

. = . + . . .
9k = 93-1,x T 9355 F35-1,5-k (12)

The magnitude of the diagonal elements of Gm must be less than 1 in order

that the prediction error filter be minimum phase. In orxder to enforce

this condition, we can set

955 = U sin 8 (13)

where ej is any real angle and U is a positive canstant slightly less than
unity depending on the camputer used. For the minisomputer a good choice
is U = 0.99999. Once the camputation of the Burg's method is campleted
the gradient of resulting P with respect to 6 is detemined so that the
error minimization procedure can be started., After a number of iterations
the filter coefficients can be recamputed fram which the power spectrum is
determined. Although the original software developed by Fougere is not

suitable for the minicamputer, proper modification has made it possible to
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use this powerful technique in the minicawputer. Figure 4a shows one
cycle of sinewave of 1 Hz at sampling rate of 20 samples per second .
Figure 4b shows the Burg's spectrum for the 20 data points. There is
spectrum splitting and the spectral peak is shifted to 0.92Hz. The
Fougere technique after 10 iterations provides a correctl‘y located peak

which is 53 times of the peak in the Burg's spectmm (The vertical scales
are not the same in the two photos. Every division in the horizontal
scale is 0.5Hz).

It is important to note that very high resolution spectrum can be

cbtained from the minicamputer using the method described above at only

slightly increased computational complexity over the Burg's method. No

Gaussian assumption is made in the method. As the method is designed for

a small nurber of samples it is particularly suitable for analyzing the

spectrum of the transient signal.

With improved computer hardware the method may become useful for near real-
time operations. Each spectral peak can have same physical meaning such as
in target detection in clutter. With proper trade-off in speed and accuracy

the method can prove to be very useful in non-Gaussian signal processing.
IV. Concluding Remarks

Althouwgh only two prohblem areas are considered in this report, non-
Gaussian signal processing is a challenging area which requires using know-
ledge in different disciplines to derive effective solutions. This area
also provides an opportunity to integrate or correlate many current signal
processing research activities which are developed independently. Continued
and strong research effort is needed to pursue new directions and techniques
to solve same difficult analytical problems in non-Gaussian signal processing.
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Fig, 4a
One cycle of sinewave
s at 1 Hz,
. |
*
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Fig, 4b

Burg's Maximum Entrop,
Power Spectrum.
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Fig. 4c
Fougere's Maximumm Entropy
Power Spectrum.
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